Search results
Results from the WOW.Com Content Network
The following Python code can also be used to calculate and plot the root locus of the closed-loop transfer function using the Python Control Systems Library [14] and Matplotlib [15]. import control as ct import matplotlib.pyplot as plt # Define the transfer function sys = ct .
In electrical engineering and control theory, a Bode plot (/ ˈ b oʊ d i / BOH-dee) is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
The following Common Lisp code implements the aforementioned formula: ( defun integrate-composite-booles-rule ( f a b n ) "Calculates the composite Boole's rule numerical integral of the function F in the closed interval extending from inclusive A to inclusive B across N subintervals."
For transfer functions (e.g., Bode plot, chirp) the complete frequency response may be graphed in two parts: power versus frequency and phase versus frequency—the phase spectral density, phase spectrum, or spectral phase. Less commonly, the two parts may be the real and imaginary parts of the transfer function.
These RLC circuit examples illustrate how resonance is related to the frequency response of the system. Specifically, these examples illustrate: How resonant frequencies can be found by looking for peaks in the gain of the transfer function between the input and output of the system, for example in a Bode magnitude plot
Often, data obtained by electrochemical impedance spectroscopy (EIS) is expressed graphically in a Bode plot or a Nyquist plot. Impedance is the opposition to the flow of alternating current (AC) in a complex system. A passive complex electrical system comprises both energy dissipater and energy storage elements.
Bode was one of the great engineering philosophers of his era. [3] Long respected in academic circles worldwide, [4] [5] he is also widely known to modern engineering students mainly for developing the asymptotic magnitude and phase plot that bears his name, the Bode plot.