enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cook's distance - Wikipedia

    en.wikipedia.org/wiki/Cook's_distance

    In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...

  3. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    Specifically, for some matrix , the squared Mahalanobis distance of (where is row of ) from the vector of mean ^ = = of length , is () = (^) (^), where = is the estimated covariance matrix of 's. This is related to the leverage h i i {\displaystyle h_{ii}} of the hat matrix of X {\displaystyle \mathbf {X} } after appending a column vector of 1 ...

  4. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    Thus, for low leverage points, DFFITS is expected to be small, whereas as the leverage goes to 1 the distribution of the DFFITS value widens infinitely. For a perfectly balanced experimental design (such as a factorial design or balanced partial factorial design), the leverage for each point is p/n, the number of parameters divided by the ...

  5. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    Figure 1. Box plot of data from the Michelson–Morley experiment displaying four outliers in the middle column, as well as one outlier in the first column. In statistics, an outlier is a data point that differs significantly from other observations.

  6. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that t i 2 /ν follows the beta distribution B(1/2,(ν − 1)/2). The distribution above is sometimes referred to as the tau distribution; [2] it was first derived by Thompson in 1935. [3]

  7. Projection matrix - Wikipedia

    en.wikipedia.org/wiki/Projection_matrix

    For linear models, the trace of the projection matrix is equal to the rank of , which is the number of independent parameters of the linear model. [8] For other models such as LOESS that are still linear in the observations y {\displaystyle \mathbf {y} } , the projection matrix can be used to define the effective degrees of freedom of the model.

  8. Regression toward the mean - Wikipedia

    en.wikipedia.org/wiki/Regression_toward_the_mean

    Galton's experimental setup "Standard eugenics scheme of descent" – early application of Galton's insight [1]. In statistics, regression toward the mean (also called regression to the mean, reversion to the mean, and reversion to mediocrity) is the phenomenon where if one sample of a random variable is extreme, the next sampling of the same random variable is likely to be closer to its mean.

  9. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it. In the MAD, the deviations of a small number of outliers are irrelevant.