Search results
Results from the WOW.Com Content Network
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
The bond between a water molecule and the metal ion is a dative covalent bond, with the oxygen atom donating both electrons to the bond. Each coordinated water molecule may be attached by hydrogen bonds to other water molecules. The latter are said to reside in the second coordination sphere.
However, these ligands also form dative covalent bonds like the L-type. [2] This type of ligand is not usually used because in certain situations it can be written in terms of L and X. For example, if a Z ligand is accompanied by an L type, it can be written as X 2. Examples of these ligands are Lewis acids, such as BR 3. [3]
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
Lewis had suggested in 1916 that two atoms are held together in a chemical bond by sharing a pair of electrons. [18] When each atom contributed one electron to the bond, it was called a covalent bond. When both electrons come from one of the atoms, it was called a dative covalent bond or coordinate bond. The distinction is not very clear-cut.
Under the framework of valence bond theory, resonance is an extension of the idea that the bonding in a chemical species can be described by a Lewis structure. For many chemical species, a single Lewis structure, consisting of atoms obeying the octet rule, possibly bearing formal charges, and connected by bonds of positive integer order, is sufficient for describing the chemical bonding and ...
For doubly bridging (μ 2-) ligands, two limiting representation are 4-electron and 2-electron bonding interactions. These cases are illustrated in main group chemistry by [Me 2 Al(μ 2-Cl)] 2 and [Me 2 Al(μ 2-Me)] 2. Complicating this analysis is the possibility of metal–metal bonding.
Measurably irreversible covalent bonding between a ligand and target molecule is atypical in biological systems. In contrast to the definition of ligand in metalorganic and inorganic chemistry , in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin .