Search results
Results from the WOW.Com Content Network
While iron is the most abundant element on Earth, most of this iron is concentrated in the inner and outer cores. [43] [44] The fraction of iron that is in Earth's crust only amounts to about 5% of the overall mass of the crust and is thus only the fourth most abundant element in that layer (after oxygen, silicon, and aluminium). [45]
Iron is an important biological element. [1] [2] [3] It is used in both the ubiquitous iron-sulfur proteins [1] and in vertebrates it is used in hemoglobin which is essential for blood and oxygen transport. [4]
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
The remaining elements found in living things are primarily metals that play a role in determining protein structure. Examples include iron, essential to hemoglobin; and magnesium, essential to chlorophyll. Some elements are essential only to certain taxonomic groups of organisms, particularly the prokaryotes.
It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787. [6] The earliest gold artifacts were discovered at the site of Wadi Qana in the Levant. [13] Silver is estimated to have been discovered in Asia Minor shortly after copper and gold. [14] There is evidence that iron was known from before 5000 BC. [15]
Iron oxides and oxyhydroxides are widespread in nature and play an important role in many geological and biological processes. They are used as iron ores, pigments, catalysts, and in thermite, and occur in hemoglobin. Iron oxides are inexpensive and durable pigments in paints, coatings and colored concretes.
Elemental iron is virtually absent on the Earth's surface except as iron-nickel alloys from meteorites and very rare forms of deep mantle xenoliths.Although iron is the fourth most abundant element in Earth's crust, composing about 5% by weight, [4] the vast majority is bound in silicate or, more rarely, carbonate minerals, and smelting pure iron from these minerals would require a prohibitive ...
Intracellular iron can be stored in ferritin and used for protein biosynthesis, or to generate reactive oxygen species (ROS) and regulate transcription via iron-responsive element-binding proteins (IRP1/2). Export occurs through ferroportin, often aided by hephaestin (Hp) and/or ceruloplasmin (Cp), and repressed by hepcidin.