Search results
Results from the WOW.Com Content Network
P-type calcium channels were named after Purkinje cells, where they were initially encountered (Llinas et al. 1989), which are crucial in cerebellar function. Activation of the Purkinje cell by climbing fibers can shift its activity from a quiet state to a spontaneously active state and vice versa, serving as a kind of toggle switch. [25]
Early in development, Purkinje cells are innervated by multiple climbing fibers, but as the cerebellum matures, these inputs gradually become eliminated resulting in a single climbing fiber input per Purkinje cell. These fibers provide very powerful, excitatory input to the cerebellum which results in the generation of complex spike excitatory ...
The Purkinje fibers are further specialized to rapidly conduct impulses (having numerous fast voltage-gated sodium channels and mitochondria, and fewer myofibrils, than the surrounding muscle tissue). Purkinje fibers take up stain differently from the surrounding muscle cells because of having relatively fewer myofibrils than other cardiac cells.
Each Purkinje cell receives excitatory input from 100,000 to 200,000 parallel fibers. Parallel fibers are said to be responsible for the simple (all or nothing, amplitude invariant) spiking of the Purkinje cell. Purkinje cells also receive input from the inferior olivary nucleus via climbing fibers. A good mnemonic for this interaction is the ...
One exception is that fibers from the flocculonodular lobe synapse directly on vestibular nuclei without first passing through the deep cerebellar nuclei. The vestibular nuclei in the brainstem are analogous structures to the deep nuclei, since they receive both mossy fiber and Purkinje cell inputs.
As they run along, the parallel fibers pass through the dendritic trees of Purkinje cells, contacting one of every 3–5 that they pass, making a total of 80–100 synaptic connections with Purkinje cell dendritic spines. [1] Granule cells use glutamate as their neurotransmitter, and therefore exert excitatory effects on their targets.
Sensory information relayed from the pons through the mossy fibers to the granule cells is then sent along the parallel fibers to the Purkinje cells for processing. Extensive branching in white matter and synapses to granular cells ensures that input from a single mossy fiber axon will influence processing in a very large number of Purkinje cells.
The target for each climbing fiber is a specific neuron in the cerebellum referred to as a Purkinje Cell. During development, there are multiple climbing fibers on a purkinje cell, however these are pruned off during postnatal development, thus leaving a mature purkinje cell with a single climbing fiber. There are three major components of the ...