Search results
Results from the WOW.Com Content Network
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
10 of the most influential figures in the history of quantum mechanics. Left to right: Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Max Born, Paul Dirac, Werner Heisenberg, Wolfgang Pauli, Erwin Schrödinger, Richard Feynman. The history of quantum mechanics is a fundamental part of the history of modern physics.
Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles.By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon.
The old quantum theory is a collection of results from the years 1900–1925 [1] which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. [2] The theory has come to be understood as the semi-classical approximation [3] to modern quantum ...
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.
Einstein, in 1905, when he wrote the Annus Mirabilis papers. 1900 – To explain black-body radiation (1862), Max Planck suggests that electromagnetic energy could only be emitted in quantized form, i.e. the energy could only be a multiple of an elementary unit E = hν, where h is the Planck constant and ν is the frequency of the radiation.
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. [1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously.
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position.