Search results
Results from the WOW.Com Content Network
The chemical structure of DNA is insufficient to understand the complexity of the 3D structures of DNA. In contrast, animated molecular models allow one to visually explore the three-dimensional (3D) structure of DNA. The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as ...
RNA strands are created using DNA strands as a template in a process called transcription, where DNA bases are exchanged for their corresponding bases except in the case of thymine (T), for which RNA substitutes uracil (U). [4] Under the genetic code, these RNA strands specify the sequence of amino acids within proteins in a process called ...
Several of the CPK colors refer mnemonically to colors of the pure elements or notable compound. For example, hydrogen is a colorless gas, carbon as charcoal, graphite or coke is black, sulfur powder is yellow, chlorine is a greenish gas, bromine is a dark red liquid, iodine in ether is violet, amorphous phosphorus is red, rust is dark orange-red, etc.
High resolution refinement of models of RNA, DNA and hybrids using AMBER force field. ... Coarse grained modeling of RNA: Free for Academic, Proprietary: Genesilico:
There is a very wide range of approaches to physical modeling, including ball-and-stick models available for purchase commercially, to molecular models created using 3D printers. The main strategy, initially in textbooks and research articles and more recently on computers.
The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...
DNA origami object from viral DNA visualized by electron tomography. [1] The map is at the top and atomic model of the DNA colored below. (Deposited in EMDB EMD-2210) . DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale.
Using the four-color chemistry, each of the four bases has a unique emission (A=red, G=blue, T=green, C=yellow), [14] and after each round, the machine records which base was added. Once the color is recorded, the fluorophore is washed away and another dNTP is washed over the flow cell and the process is repeated.