Search results
Results from the WOW.Com Content Network
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299 792 458 m/s [2]). Known as electromagnetic radiation, these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays.
The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The solutions to a wave equation give the time-evolution and spatial dependence of the amplitude. Boundary conditions determine if the solutions describe traveling waves or standing waves. From classical equations of motion and field equations; mechanical, gravitational wave, and electromagnetic wave equations can be derived. The general linear ...
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
The wave equation describing a standing wave field in one dimension (position ) is p x x − 1 c 2 p t t = 0 , {\displaystyle p_{xx}-{\frac {1}{c^{2}}}p_{tt}=0,} where p {\displaystyle p} is the acoustic pressure (the local deviation from the ambient pressure) and c {\displaystyle c} the speed of sound , using subscript notation for the partial ...
is the hull speed of the vessel in meters per second, and is the acceleration due to gravity in meters per second squared. This equation is the same as the equation used to calculate the speed of surface water waves in deep water. It dramatically simplifies the units on the constant before the radical in the empirical equation, while giving a ...
To gain some basic intuition for this equation, we consider a propagating (cosine) wave A cos(kx − ωt). We want to see how fast a particular phase of the wave travels. For example, we can choose kx - ωt = 0, the phase of the first crest. This implies kx = ωt, and so v = x / t = ω / k.