Search results
Results from the WOW.Com Content Network
The cell body varies in size from 5–20 micrometers in diameter and contain 40–60 cell processes per cell, [4] with a cell to cell distance between 20–30 micrometers. [3] A mature osteocyte contains a single nucleus that is located toward the vascular side and has one or two nucleoli and a membrane. [ 5 ]
Bone is a highly vascular tissue, and active formation of blood vessel cells, also from mesenchymal stem cells, is essential to support the metabolic activity of bone. The balance of bone formation and bone resorption tends to be negative with age, particularly in post-menopausal women, [ 7 ] often leading to a loss of bone serious enough to ...
Bone tissue is removed by osteoclasts, and then new bone tissue is formed by osteoblasts. Both processes utilize cytokine (TGF-β, IGF) signalling.In osteology, bone remodeling or bone metabolism is a lifelong process where mature bone tissue is removed from the skeleton (a process called bone resorption) and new bone tissue is formed (a process called ossification or new bone formation).
A bone is a rigid organ [1] that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, and enable mobility.
An osteoclast is a large multinucleated cell and human osteoclasts on bone typically have four nuclei [5] and are 150–200 μm in diameter. When osteoclast-inducing cytokines are used to convert macrophages to osteoclasts, very large cells that may reach 100 μm in diameter occur. These may have dozens of nuclei, and typically express major ...
Bone is broken down by osteoclasts, and rebuilt by osteoblasts, both of which communicate through cytokine (TGF-β, IGF) signalling.Ossification (also called osteogenesis or bone mineralization) in bone remodeling is the process of laying down new bone material by cells named osteoblasts.
The initiation of endochondral ossification starts by proliferation and condensation of mesenchymal cells in the area where the bone will eventually be formed. Subsequently, these mesenchymal progenitor cells differentiate into chondroblasts, which actively synthesize cartilage matrix components.
The first step in the process is the formation of bone spicules which eventually fuse with each other and become trabeculae. The periosteum is formed and bone growth continues at the surface of trabeculae. Much like spicules, the increasing growth of trabeculae result in interconnection and this network is called woven bone.