Search results
Results from the WOW.Com Content Network
That is, a function is Lipschitz continuous if there is a constant K such that the inequality ((), ()) (,) holds for any ,. [15] The Lipschitz condition occurs, for example, in the Picard–Lindelöf theorem concerning the solutions of ordinary differential equations.
A function is called locally Lipschitz continuous if for every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous. Equivalently, if X is a locally compact metric space, then f is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of X .
It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in dynamic programming (the Hamilton–Jacobi–Bellman equation), differential games (the Hamilton–Jacobi–Isaacs equation) or front evolution problems, [1] [2] as well as ...
Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (− r ) = f ( r ) , Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero.
In contrast, the function is upper hemicontinuous everywhere. For example, considering any sequence a that converges to x from the left or from the right, and any corresponding sequence b, the limit of b is contained in the vertical line that is the image of the limit of a. The image on the left shows a function that is not upper hemicontinuous ...
A continuous function () on the closed interval [,] showing the absolute max (red) and the absolute min (blue). In calculus , the extreme value theorem states that if a real-valued function f {\displaystyle f} is continuous on the closed and bounded interval [ a , b ] {\displaystyle [a,b]} , then f {\displaystyle f} must attain a maximum and a ...
In mathematics, engineering, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions.. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: