enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Raman scattering - Wikipedia

    en.wikipedia.org/wiki/Raman_scattering

    Raman spectroscopy employs the Raman effect for substances analysis. The spectrum of the Raman-scattered light depends on the molecular constituents present and their state, allowing the spectrum to be used for material identification and analysis. Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and ...

  3. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    The Raman effect was named after one of its discoverers, the Indian scientist C. V. Raman, who observed the effect in organic liquids in 1928 together with K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals. [1] Raman won the Nobel Prize in Physics in 1930 for this discovery.

  4. Resonance Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Resonance_Raman_spectroscopy

    Resonance hyper-Raman spectroscopy: Excitation of the sample occurs by two-photon absorption, rather than by absorption of a single photon. This arrangement allows for excitation of modes that are forbidden in ordinary resonance Raman spectroscopy, with intensity enhancement due to resonance, and also simplifies collection of scattered light ...

  5. Stimulated Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Stimulated_Raman_spectroscopy

    Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...

  6. Surface-enhanced Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Surface-enhanced_Raman...

    The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present.

  7. X-ray Raman scattering - Wikipedia

    en.wikipedia.org/wiki/X-ray_Raman_scattering

    X-ray Raman scattering (XRS) is non-resonant inelastic scattering of X-rays from core electrons.It is analogous to vibrational Raman scattering, which is a widely used tool in optical spectroscopy, with the difference being that the wavelengths of the exciting photons fall in the X-ray regime and the corresponding excitations are from deep core electrons.

  8. Raman spectroelectrochemistry - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroelectrochemistry

    RRS effect (Resonance Raman Scaterring) The Raman resonance effect produces an increase in Raman intensity up to 10 6 times. In this phenomenon, the monochromatic light interaction with the sample produces the transition of the molecules from the fundamental state to an excited electronic state, instead of a virtual state as in normal Raman spectroscopy.

  9. Raman amplification - Wikipedia

    en.wikipedia.org/wiki/Raman_amplification

    Raman amplification / ˈ r ɑː m ən / [1] is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy ...