Search results
Results from the WOW.Com Content Network
Raman received the Nobel Prize in 1930 for his work on the scattering of light. [6] In 1998 the Raman effect was designated a National Historic Chemical Landmark by the American Chemical Society in recognition of its significance as a tool for analyzing the composition of liquids, gases, and solids. [7]
Although the inelastic scattering of light was predicted by Adolf Smekal in 1923, [3] it was not observed in practice until 1928. The Raman effect was named after one of its discoverers, the Indian scientist C. V. Raman, who observed the effect in organic liquids in 1928 together with K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals. [1]
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
Raman optical activity can be observed in a number of forms, depending on the polarization of the incident and the scattered light. For instance, in the scattered circular polarization (SCP) experiment, the incident light is linearly polarized and differences in circular polarization of the scattered light are measured.
Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...
Wine glass in LCD projectors light beam makes the beam scatter.. In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass.
Like ordinary Raman spectroscopy, resonance Raman is compatible with samples in water, which has a very weak scattering intensity and little contribution to spectra. However, the need for an excitation laser with a wavelength matching that of an electronic transition in the analyte of interest somewhat limits the applicability of the method.
The Raman scattered light is emitted by the stimulation of the electric field of the incident light. Therefore, the direction of the vibration of the electric field, or polarization direction, of the scattered light might be expected to be the same as that of the incident light. In reality, however, some fraction of the Raman scattered light ...