Search results
Results from the WOW.Com Content Network
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
A modulus of 255 is used above and in examples below for Fletcher-16, however some real-world implementations use 256. The TCP protocol's alternate checksum has Fletcher-16 with a 256 modulus, [3] as do the checksums of UBX-* messages from a U-blox GPS. [4] Which modulus is used is dependent on the implementation.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...
Modulus (algebraic number theory) In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal[2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.
Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).