enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Field (physics) - Wikipedia

    en.wikipedia.org/wiki/Field_(physics)

    A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...

  3. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    The concept of potential energy applied to small test particles led to the concept of a scalar field, a mathematical model representing the forces throughout space. While this mathematical model is not a mechanical medium, the mental picture of such a field resembles a medium. [2]: 197

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  5. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  6. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  7. Kaluza–Klein theory - Wikipedia

    en.wikipedia.org/wiki/Kaluza–Klein_theory

    Let one also introduce the four-dimensional spacetime metric , where Greek indices span the usual four dimensions of space and time; a 4-vector identified with the electromagnetic vector potential; and a scalar field . Then decompose the 5D metric so that the 4D metric is framed by the electromagnetic vector potential, with the scalar field at ...

  8. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.

  9. Horndeski's theory - Wikipedia

    en.wikipedia.org/wiki/Horndeski's_theory

    Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion. [ clarification needed ] The theory was first proposed by Gregory Horndeski in 1974 [ 1 ] and has found numerous applications, particularly in the ...