Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
Hence we identify = =, means that allowed scattering vectors = are those equal to reciprocal lattice vectors for a crystal in diffraction, and this is the meaning of the Laue equations. This fact is sometimes called the Laue condition .
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
Diffraction is the same physical effect as interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. [1]: 433 Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.
While the Bragg formulation assumes a unique choice of direct lattice planes and specular reflection of the incident X-rays, the Von Laue formula only assumes monochromatic light and that each scattering center acts as a source of secondary wavelets as described by the Huygens principle. Each scattered wave contributes to a new plane wave given by:
The sections below deal with dynamical diffraction of X-rays. Reflectivities for Laue and Bragg geometries, top and bottom, respectively, as evaluated by the dynamical theory of diffraction for the absorption-less case. The flat top of the peak in Bragg geometry is the so-called Darwin Plateau.
Pole figure and diffraction figure. Consider the diffraction pattern obtained with a single crystal, on a plane that is perpendicular to the beam, e.g. X-ray diffraction with the Laue method, or electron diffraction in a transmission electron microscope. The diffraction figure shows spots. The position of the spots is determined by the Bragg's ...
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.