enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.

  3. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Here, Einstein used V to represent the speed of light in vacuum and L to represent the energy lost by a body in the form of radiation. [5] Consequently, the equation E = mc 2 was not originally written as a formula but as a sentence in German saying that "if a body gives off the energy L in the form of radiation, its mass diminishes by ⁠ L ...

  4. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  5. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    where w C, w H, w S, w O refer to the mass fraction of each element in the fuel oil, sulfur burning to SO 2, and AFR mass refers to the air-fuel ratio in mass units. For 1 kg of fuel oil containing 86.1% C, 13.6% H, 0.2% O, and 0.1% S the stoichiometric mass of air is 14.56 kg, so AFR = 14.56. The combustion product mass is then 15.56 kg.

  6. Betz's law - Wikipedia

    en.wikipedia.org/wiki/Betz's_law

    According to Betz's law, no wind turbine of any mechanism can capture more than 16/27 (59.3%) of the kinetic energy in wind. The factor 16/27 (0.593) is known as Betz's coefficient. Practical utility-scale wind turbines achieve at peak 75–80% of the Betz limit. [2] [3] The Betz limit is based on an open-disk actuator.

  7. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  8. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger ...

  9. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.