Search results
Results from the WOW.Com Content Network
Problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions. Problems 21–23 are problems in completion, which in modern notation are simply subtraction problems.
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
142857 2 = 142857 × 142857 = 20408122449 20408 + 122449 = 142857. Multiplying by a multiple of 7 will result in 999999 through this process: 142857 × 7 4 = 342999657 342 + 999657 = 999999. If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation ...
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Many programming languages provide functions that can be used to divide a floating point number by a power of two. For example, the Java programming language provides the method java.lang.Math.scalb for scaling by a power of two, [7] and the C programming language provides the function ldexp for the same purpose. [8]
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
The method is based on the observation that 100 leaves a remainder of 2 when divided by 7. And since we are breaking the number into digit pairs we essentially have powers of 100. 1 mod 7 = 1 100 mod 7 = 2 10,000 mod 7 = 2^2 = 4 1,000,000 mod 7 = 2^3 = 8; 8 mod 7 = 1 100,000,000 mod 7 = 2^4 = 16; 16 mod 7 = 2