Search results
Results from the WOW.Com Content Network
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant
Émilie du Châtelet (1706–1749) was the first to publish the relation for kinetic energy .This means that an object with twice the speed hits four times harder. (Portrait by Maurice Quentin de
In physics, particularly in mechanics, specific kinetic energy is a fundamental concept that refers to the kinetic energy per unit mass of a body or system of bodies in motion.
Unlike earlier turbulence models, k-ε model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. [2] The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reynolds stress and mean rate of deformations is the same in all directions.
The principle of the kinetic energy penetrator is that it uses its kinetic energy, which is a function of its mass and velocity, to force its way through armor. If the armor is defeated, the heat and spalling (particle spray) generated by the penetrator going through the armor, and the pressure wave that develops, ideally destroys the target.
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow.Physically, the turbulence kinetic energy is characterized by measured root-mean-square (RMS) velocity fluctuations.
Kinetic energy is a function of mass and the velocity of an object. [1] For a kinetic energy weapon in the aerospace field, both objects are moving and it is the relative velocity that is important.