enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    The only properties of multiplication used in the proof using the limit definition of derivative is that multiplication is continuous and bilinear. So for any continuous bilinear operation, (,) ′ = (′,) + (, ′).

  3. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...

  4. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Note also how multiplication by zero causes a reduction in dimensionality, as does multiplication by a singular matrix where the determinant is 0. In this process, information is lost and cannot be regained. For real and complex numbers, which includes, for example, natural numbers, integers, and fractions, multiplication has certain properties:

  6. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  7. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...

  8. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  9. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.