Search results
Results from the WOW.Com Content Network
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason, [1] for whom it is named. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on ...
The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in
A label is an explicit name or number assigned to a fixed position within the source code, and which may be referenced by control flow statements appearing elsewhere in the source code. A label marks a position within source code and has no other effect. Line numbers are an alternative to a named label used in some languages (such as BASIC ...
h() is a transfer function of an impulse response to the input. The convolution allows the filter to only be activated when the input recorded a signal at the same time value. This filter returns the input values (x(t)) if k falls into the support region of function h.
A strictly proper transfer function is a transfer function where the degree of the numerator is less than the degree of the denominator. The difference between the degree of the denominator (number of poles) and degree of the numerator (number of zeros) is the relative degree of the transfer function.