Search results
Results from the WOW.Com Content Network
Prismatoid with parallel faces A 1 and A 3, midway cross-section A 2, and height h. In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes.Its lateral faces can be trapezoids or triangles. [1]
If a plane intersects a solid (a 3-dimensional object), then the region common to the plane and the solid is called a cross-section of the solid. [1] A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid.
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron.
Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated polyhedron. The polyhedron has its original faces doubled in sides, and contains the faces of the dual. Bitruncated (2t) (also truncated dual) 2t{p,q} t 1,2 {p,q}