Search results
Results from the WOW.Com Content Network
Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.
Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback factor is chosen smaller than in Figure 6 or 7, moving the condition | β A OL | = 1 to lower frequency. In this example, 1 / β = 77 dB, and at low frequencies A FB ≈ 77 dB as well. Figure 8 shows the gain plot.
It turns out that the calculation of the magnitude is not needed to determine if a point in the s-plane is part of the root locus because varies and can take an arbitrary real value. For each point of the root locus a value of can be calculated. This is known as the magnitude condition.
Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...
LQR controllers possess inherent robustness with guaranteed gain and phase margin, [1] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem. Like the LQR problem itself, the LQG problem is one of the most fundamental problems in control theory. [2]
Gain and group delay of the third-order Butterworth filter with = The group delay is defined as the negative derivative of the phase shift with respect to angular frequency and is a measure of the distortion in the signal introduced by phase differences for different frequencies. The gain and the delay for this filter are plotted in the graph ...
The open-loop response characteristics applied in a specification are typically Gain and Phase margin and bandwidth. These characteristics may be evaluated through simulation including a dynamic model of the system under control coupled with the compensation model.
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...