Search results
Results from the WOW.Com Content Network
Urbain Le Verrier (1811–1877) The discoverer of Neptune.. In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial = of a square matrix, A, named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier.
The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any basis (that is, the characteristic polynomial does not depend on the choice of a basis).
This polynomial is called the characteristic polynomial of A. Equation is called the characteristic equation or the secular equation of A. The fundamental theorem of algebra implies that the characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored into the product of n linear terms,
Computing the characteristic polynomial and choosing a suitable feedback matrix can be a challenging task, especially in larger systems. One way to make computations easier is through Ackermann's formula. For simplicity's sake, consider a single input vector with no reference parameter r, such as
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
When M is the cycle matroid M(G) of a graph G, the characteristic polynomial is a slight transformation of the chromatic polynomial, which is given by χ G (λ) = λ c p M(G) (λ), where c is the number of connected components of G. When M is the bond matroid M*(G) of a graph G, the characteristic polynomial equals the flow polynomial of G.
Determinants are used for defining the characteristic polynomial of a square matrix, whose roots are the eigenvalues. In geometry , the signed n -dimensional volume of a n -dimensional parallelepiped is expressed by a determinant, and the determinant of a linear endomorphism determines how the orientation and the n -dimensional volume are ...
If the roots of the characteristic polynomial ρ all have modulus less than or equal to 1 and the roots of modulus 1 are of multiplicity 1, we say that the root condition is satisfied. A linear multistep method is zero-stable if and only if the root condition is satisfied ( Süli & Mayers 2003 , p. 335).