Search results
Results from the WOW.Com Content Network
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The calculator was sold in a hinged mahogany case 46 by 12 by 11 centimetres (18.1 in × 4.7 in × 4.3 in) which, if required, holds the instrument when in use by means a brass support that can be latched to the outer end of the case. [6] [7] Out of its case the calculator weighs about 900 grams (32 oz). [8]
The calculator can be set to display values in binary, octal, or hexadecimal form, as well as the default decimal. When a non-decimal base is selected, calculation results are truncated to integers. Regardless of which display base is set, non-decimal numbers must be entered with a suffix indicating their base, which involves three or more ...
To extend operating time and avoid wearing out the on/off slide switch, users would press the decimal point key to force the display to illuminate just a single LED junction. The HP-35 calculated arithmetic, logarithmic, and trigonometric functions but the complete implementation used only 767 carefully chosen instructions (7670 bits).
The first American-made pocket-sized calculator, the Bowmar 901B (popularly termed The Bowmar Brain), measuring 5.2 by 3.0 by 1.5 inches (132 mm × 76 mm × 38 mm), came out in the Autumn of 1971, with four functions and an eight-digit red LED display, for US$240, while in August 1972 the four-function Sinclair Executive became the first ...
For comparison, the same number in decimal representation: 1.125 × 2 3 (using decimal representation), or 1.125B3 (still using decimal representation). Some calculators use a mixed representation for binary floating point numbers, where the exponent is displayed as decimal number even in binary mode, so the above becomes 1.001 b × 10 b 3 d or ...
The stepped reckoner or Leibniz calculator was a mechanical calculator invented by the German mathematician Gottfried Wilhelm Leibniz (started in 1673, when he presented a wooden model to the Royal Society of London [2] and completed in 1694). [1]
To add, for example, the amounts of 30.72 and 4.49 (which, in adding machine terms, on a decimal adding machine is 3,072 plus 449 "decimal units"), the following process took place: Press the 3 key in the column fourth from the right (multiples of one thousand), the 7 key in the column second from right (multiples of ten) and the 2 key in the ...