enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thymine - Wikipedia

    en.wikipedia.org/wiki/Thymine

    As its alternate name (5-methyluracil) suggests, thymine may be derived by methylation of uracil at the 5th carbon. In RNA, thymine is replaced with uracil in most cases. In DNA, thymine (T) binds to adenine (A) via two hydrogen bonds, thereby stabilizing the nucleic acid structures. Thymine combined with deoxyribose creates the nucleoside ...

  3. Uracil - Wikipedia

    en.wikipedia.org/wiki/Uracil

    The first reaction is the simplest of the syntheses, by adding water to cytosine to produce uracil and ammonia: [2] C 4 H 5 N 3 O + H 2 O → C 4 H 4 N 2 O 2 + NH 3. The most common way to synthesize uracil is by the condensation of malic acid with urea in fuming sulfuric acid: [5] C 4 H 4 O 4 + NH 2 CONH 2 → C 4 H 4 N 2 O 2 + 2 H 2 O + CO

  4. Thymidine - Wikipedia

    en.wikipedia.org/wiki/Thymidine

    Instead of thymidine, RNA contains uridine (uracil joined to ribose). Uracil is chemically very similar to thymine, which is also known as 5-methyluracil. Since thymine nucleotides are precursors of DNA (but not RNA), the prefix "deoxy" is often left out, i.e., deoxythymidine is often just called thymidine. Thymidine is listed as a chemical ...

  5. DNA methylation - Wikipedia

    en.wikipedia.org/wiki/DNA_methylation

    Methylation of cytosine to form 5-methylcytosine occurs at the same 5 position on the pyrimidine ring where the DNA base thymine's methyl group is located; the same position distinguishes thymine from the analogous RNA base uracil, which has no methyl group. Spontaneous deamination of 5-methylcytosine converts it to thymine. This results in a T ...

  6. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    The purine nitrogenous bases are characterized by their single amino group (−NH 2), at the C6 carbon in adenine and C2 in guanine. [5] Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine, so those three bases are called the pyrimidine bases. [6]

  7. Thymidylate synthase - Wikipedia

    en.wikipedia.org/wiki/Thymidylate_synthase

    The following reaction is catalyzed by thymidylate synthase: 5,10-methylenetetrahydrofolate + dUMP dihydrofolate + dTMP. By means of reductive methylation, deoxyuridine monophosphate (dUMP) and N5,N10-methylene tetrahydrofolate are together used to form dTMP, yielding dihydrofolate as a secondary product.

  8. Oligonucleotide synthesis - Wikipedia

    en.wikipedia.org/wiki/Oligonucleotide_synthesis

    The 5'-hydroxyl group is protected by an acid-labile DMT (4,4'-dimethoxytrityl) group. Thymine and uracil, nucleic bases of thymidine and uridine, respectively, do not have exocyclic amino groups and hence do not require any protection.

  9. Uracil-DNA glycosylase - Wikipedia

    en.wikipedia.org/wiki/Uracil-DNA_glycosylase

    The side chain of Tyr147 interferes sterically with the thymine C5 methyl group, while a specific hydrogen bond between the uracil O2 carbonyl and Gln144 discriminates against a cytosine substrate, which lacks the necessary carbonyl. [9] Once uracil is recognized, cleavage of the glycosidic bond proceeds according to the mechanism below.