Search results
Results from the WOW.Com Content Network
Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
Pharmacokinetics: . Process of the uptake of drugs by the body, the biotransformation they undergo, the distribution of the drugs and their metabolites in the tissues, and the elimination of the drugs and their metabolites from the body over a period of time.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
In pharmacokinetics, the effective half-life is the rate of accumulation or elimination of a biochemical or pharmacological substance in an organism; it is the analogue of biological half-life when the kinetics are governed by multiple independent mechanisms.
Context-sensitive half-life or context sensitive half-time is defined as the time taken for blood plasma concentration of a drug to decline by one half after an infusion designed to maintain a steady state (i.e. a constant plasma concentration) has been stopped. The "context" is the duration of infusion.
An equianalgesic chart can be a useful tool, but the user must take care to correct for all relevant variables such as route of administration, cross tolerance, half-life and the bioavailability of a drug. [5] For example, the narcotic levorphanol is 4–8 times stronger than morphine, but also has a much longer half-life. Simply switching the ...
But is also equivalent to divided by elimination rate half-life /, = /. Thus, = /. This means, for example, that an increase in total clearance results in a decrease in elimination rate half-life, provided distribution volume is constant.