Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Atmospheric models calculate winds, heat transfer, radiation, relative humidity, and surface hydrology within each grid and evaluate interactions with neighboring points. [1] A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean.
This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible. To change this template's initial visibility, the |state= parameter may be used:
Climate models divide the planet into a 3-dimensional grid and apply differential equations to each grid. The equations are based on the basic laws of physics, fluid motion, and chemistry. Numerical climate models (or climate system models) are mathematical models that can simulate the interactions of important drivers of climate.
Ecologists often use a six-season model for temperate climate regions which are not tied to any fixed calendar dates: prevernal, vernal, estival, serotinal, autumnal, and hibernal. Many tropical regions have two seasons: the rainy/wet/monsoon season and the dry season. Some have a third cool, mild, or harmattan season.
Thus, the space model of a ternary phase diagram is a right-triangular prism. The prism sides represent corresponding binary systems A-B, B-C, A-C. However, the most common methods to present phase equilibria in a ternary system are the following: 1) projections on the concentration triangle ABC of the liquidus, solidus, solvus surfaces; 2 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Land masses change surface temperature more quickly than oceans, mainly because convective mixing between shallow and deeper waters keeps the ocean surface relatively cooler. Similarly, the very large thermal inertia of the global ocean delays changes to Earth's average surface temperature when gradually driven by other forcing factors.