Search results
Results from the WOW.Com Content Network
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function.
The choice of can matter quite strongly: every complemented vector subspace has algebraic complements that do not complement topologically. Because a linear map between two normed (or Banach ) spaces is bounded if and only if it is continuous , the definition in the categories of normed (resp. Banach ) spaces is the same as in topological ...
The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem:
The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice versa. This is a special case of the previous two properties, as an independent ...
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
In computational complexity theory, the complement of a decision problem is the decision problem resulting from reversing the yes and no answers. [1] Equivalently, if we define decision problems as sets of finite strings, then the complement of this set over some fixed domain is its complement problem.
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
c is continuous function. Axiom c4. Involutions c is an involution, which means that c(c(a)) = a for each a ∈ [0,1] c is a strong negator (aka fuzzy complement). A function c satisfying axioms c1 and c3 has at least one fixpoint a * with c(a *) = a *, and if axiom c2 is fulfilled as well