Search results
Results from the WOW.Com Content Network
A time dimension with a grain of seconds in a day will only have 86400 rows. A more or less detailed grain for date/time dimensions can be chosen depending on needs. As examples, date dimensions can be accurate to year, quarter, month or day and time dimensions can be accurate to hours, minutes or seconds.
Fact_Sales is the fact table and there are three dimension tables Dim_Date, Dim_Store and Dim_Product. Each dimension table has a primary key on its Id column, relating to one of the columns (viewed as rows in the example schema) of the Fact_Sales table's three-column (compound) primary key (Date_Id, Store_Id, Product_Id).
The MultiDimensional eXpressions (MDX) language provides a specialized syntax for querying and manipulating the multidimensional data stored in OLAP cubes. [1] While it is possible to translate some of these into traditional SQL, it would frequently require the synthesis of clumsy SQL expressions even for very simple MDX expressions.
In the data warehouse practice of extract, transform, load (ETL), an early fact or early-arriving fact, [1] also known as late-arriving dimension or late-arriving data, [2] denotes the detection of a dimensional natural key during fact table source loading, prior to the assignment of a corresponding primary key or surrogate key in the dimension table.
Dimensions are the foundation of the fact table, and is where the data for the fact table is collected. Typically dimensions are nouns like date, store, inventory etc. These dimensions are where all the data is stored. For example, the date dimension could contain data such as year, month and weekday. Identify the facts
Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...
TIME WITH TIME ZONE: the same as TIME, but including details about the time zone in question. TIMESTAMP: This is a DATE and a TIME put together in one variable (e.g. 2011-05-03 15:51:36.123456). TIMESTAMP WITH TIME ZONE: the same as TIMESTAMP, but including details about the time zone in question.
The snowflake schema is similar to the star schema. However, in the snowflake schema, dimensions are normalized into multiple related tables, whereas the star schema's dimensions are denormalized with each dimension represented by a single table. A complex snowflake shape emerges when the dimensions of a snowflake schema are elaborate, having ...