Search results
Results from the WOW.Com Content Network
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
The Lattice Boltzmann methods for solids (LBMS) are a set of methods for solving partial differential equations (PDE) in solid mechanics. The methods use a discretization of the Boltzmann equation(BM), and their use is known as the lattice Boltzmann methods for solids. LBMS methods are categorized by their reliance on: Vectorial distributions [1]
Toggle the table of contents. ... is a "weight" matrix, and is a "bias" vector . Training an autoencoder ... These train a pair restricted Boltzmann machines as ...
Boltzmann machine. Restricted; GAN; ... means that each multiplication multiplies a matrix by a matrix. ... is the weight matrix. Given a loss ...
This is not a restricted Boltzmann machine. A Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising model), named after Ludwig Boltzmann is a spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, [1] that is a stochastic Ising model.
Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe. These algorithms all include distributed parallel versions that integrate with Apache Hadoop and Spark. [5]
A vertex model is a type of statistical mechanics model in which the Boltzmann weights are associated with a vertex in the model (representing an atom or particle). [1] [2] This contrasts with a nearest-neighbour model, such as the Ising model, in which the energy, and thus the Boltzmann weight of a statistical microstate is attributed to the bonds connecting two neighbouring particles.
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation.The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations.