Search results
Results from the WOW.Com Content Network
Terminations of the vasa recta form the straight venules, branches from the plexuses at the apices of the medullary pyramids. They run outward in a straight course between the tubes of the medullary substance and join the interlobular veins to form venous arcades. These in turn unite and form veins which pass along the sides of the renal pyramids.
Post-capillary venules are the smallest of the veins with a diameter of between 10 and 30 micrometres (μm). When the post-capillary venules increase in diameter to 50μm they can incorporate smooth muscle and are known as muscular venules. [1] Veins contain approximately 70% of total blood volume, while about 25% is contained in the venules. [2]
[3] This provides tighter control over the blood flow through the glomerulus, since arterioles dilate and constrict more readily than venules, owing to their thick circular smooth muscle layer (tunica media). The blood exiting the efferent arteriole enters a renal venule, which in turn enters a renal interlobular vein and then into the renal vein.
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
The venous system apart from the post-capillary venules is a high volume, low pressure system. Vascular smooth muscle cells control the size of the vein lumens, and thereby help to regulate blood pressure. [31] The post-capillary venules are exchange vessels whose ultra-thin walls allow the ready diffusion of molecules from the capillaries. [10]
Venules; Veins. Large collecting vessels, such as the subclavian vein, the jugular vein, the renal vein and the iliac vein. Venae cavae (the two largest veins, carry blood into the heart). Sinusoids. Extremely small vessels located within bone marrow, the spleen and the liver.
The structure of the vasa vasorum varies with the size, function and location of the vessels. Cells need to be within a few cell-widths of a capillary to stay alive. In the largest vessels, the vasa vasorum penetrates the outer (tunica adventitia) layer and middle (tunica media) layer almost to the inner (tunica intima) layer.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code