Search results
Results from the WOW.Com Content Network
Not every triangulation method assures invariance, at least not for general types of coordinate transformations. For a homogeneous representation of 3D coordinates, the most general transformation is a projective transformation, represented by a 4 × 4 {\displaystyle 4\times 4} matrix T {\displaystyle \mathbf {T} } .
In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications
The astronomer Tycho Brahe applied the method in Scandinavia, completing a detailed triangulation in 1579 of the island of Hven, where his observatory was based, with reference to key landmarks on both sides of the Øresund, producing an estate plan of the island in 1584. [3]
Polygon triangulation. In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.
Bowyer–Watson algorithm, an O(n log(n)) to O(n 2) algorithm for generating a Delaunay triangulation in any number of dimensions, can be used in an indirect algorithm for the Voronoi diagram. The Jump Flooding Algorithm can generate approximate Voronoi diagrams in constant time and is suited for use on commodity graphics hardware.
The Riemann-Hurwitz formula allows to determine the genus of a compact, connected Riemann surface without using explicit triangulation. The proof needs the existence of triangulations for surfaces in an abstract sense: Let F : X → Y {\displaystyle F:X\rightarrow Y} be a non-constant holomorphic function on a surface with known genus.
A triangulation of a set of points in the Euclidean space is a simplicial complex that covers the convex hull of , and whose vertices belong to . [1] In the plane (when P {\displaystyle {\mathcal {P}}} is a set of points in R 2 {\displaystyle \mathbb {R} ^{2}} ), triangulations are made up of triangles, together with their edges and vertices.
The closest neighbor b to any point p is on an edge bp in the Delaunay triangulation since the nearest neighbor graph is a subgraph of the Delaunay triangulation. The Delaunay triangulation is a geometric spanner : In the plane ( d = 2 ), the shortest path between two vertices, along Delaunay edges, is known to be no longer than 1.998 times the ...