Search results
Results from the WOW.Com Content Network
Iron is also stored as a pigment called hemosiderin, which is an ill-defined deposit of protein and iron, created by macrophages where excess iron is present, either locally or systemically, e.g., among people with iron overload due to frequent blood cell destruction and the necessary transfusions their condition calls for. If systemic iron ...
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease.
Iron plays an essential role in marine systems and can act as a limiting nutrient for planktonic activity. [200] Because of this, too much of a decrease in iron may lead to a decrease in growth rates in phytoplanktonic organisms such as diatoms. [201] Iron can also be oxidized by marine microbes under conditions that are high in iron and low in ...
Virtually every cell in the body requires iron in order to function well. Iron is involved in key bodily processes, including the transportation of oxygen in the blood. It also plays a central ...
It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload. [3] Ferritin is found in most tissues as a cytosolic protein, but small amounts are secreted into the serum where it functions as an iron ...
Hemosiderin or haemosiderin is an iron-storage complex that is composed of partially digested ferritin and lysosomes. The breakdown of heme gives rise to biliverdin and iron. [1] [2] The body then traps the released iron and stores it as hemosiderin in tissues. [3] Hemosiderin is also generated from the abnormal metabolic pathway of ferritin. [3]
Iron-binding proteins are carrier proteins and metalloproteins that are important in iron metabolism [1] and the immune response. [2] [3] Iron is required for life.Iron-dependent enzymes catalyze a variety of biochemical reactions and can be divided into three broad classes depending on the structure of their active site: non-heme mono-iron, non-heme diiron , or heme centers. [4]
This functionality is used in cytochromes, which function as electron-transfer vectors. The presence of the metal ion allows metalloenzymes to perform functions such as redox reactions that cannot easily be performed by the limited set of functional groups found in amino acids. [16] The iron atom in most cytochromes is contained in a heme group ...