Search results
Results from the WOW.Com Content Network
The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Because the exterior derivative d has the property that d 2 = 0, it can be used as the differential (coboundary) to define de Rham cohomology on a manifold. The k -th de Rham cohomology (group) is the vector space of closed k -forms modulo the exact k -forms; as noted in the previous section, the Poincaré lemma states that these vector spaces ...
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
[22] [23] Differential quadrature is of practical interest because its allows one to compute derivatives from noisy data. The name is in analogy with quadrature , meaning numerical integration , where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule .
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.
The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.