Search results
Results from the WOW.Com Content Network
The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]
The trapezo-rhombic dodecahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It consists of copies of a single cell, the trapezo-rhombic dodecahedron. It is similar to the higher symmetric rhombic dodecahedral honeycomb which has all 12 faces as rhombi.
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.. The book was written as a guide book to building polyhedra as physical models.
The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I ...
A stellation diagram, or facetting diagram, (for polyhedra) represents facet plane intersections outside of a uniform polyhedra face. The inner most polygon represents the original face. The diagram is used as a 2D selection of solid facets represented in a given stellated form. Article: List of Wenninger polyhedron models
The rhombic dodecahedron packs together to fill space. The rhombic dodecahedron can be seen as a degenerate pyritohedron where the 6 special edges have been reduced to zero length, reducing the pentagons into rhombic faces. The rhombic dodecahedron has several stellations, the first of which is also a parallelohedral spacefiller.
For example, a chamfered cube, cC, can be constructed as t 4 daC, as a rhombic dodecahedron, daC or jC, with its degree-4 vertices truncated. A lofted cube, lC is the same as t 4 kC. A quinto-dodecahedron, qD can be constructed as t 5 daaD or t 5 deD or t 5 oD, a deltoidal hexecontahedron, deD or oD, with its degree-5 vertices truncated.