enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    where each network module can be a linear transform, a nonlinear activation function, a convolution, etc. () is the input vector, () is the output vector from the first module, etc. BatchNorm is a module that can be inserted at any point in the feedforward network.

  4. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    There are a number of matrix norms that act on the singular values of the matrix. Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix.

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature scaling is a method used to normalize the range of independent variables or features of data. In data processing , it is also known as data normalization and is generally performed during the data preprocessing step.

  6. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .

  7. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    When learning a linear function , characterized by an unknown vector such that () =, one can add the -norm of the vector to the loss expression in order to prefer solutions with smaller norms. Tikhonov regularization is one of the most common forms.

  8. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  9. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution.. RLS is used for two main reasons.