Search results
Results from the WOW.Com Content Network
The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.
Thermal velocity or thermal speed is a typical velocity of the thermal motion of particles that make up a gas, liquid, etc. Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution.
Gas dynamics is the overview of the average value in the distance between two molecules of gas that has collided with out ignoring the structure in which the molecules are contained. The field requires a great amount of knowledge and practical use in the ideas of the kinetic theory of gases, and it links the kinetic theory of gases with the ...
Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas. However, it can also be used to extend that distribution to particles with a different energy–momentum relation , such as relativistic particles (resulting in Maxwell–Jüttner distribution ), and to other than three-dimensional spaces.
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.
This is a list of gases at standard conditions, which means substances that boil or sublime at or below 25 °C (77 °F) and 1 atm pressure and are reasonably stable.
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
where D is the diffusivity of A through B, proportional to the average molecular velocity and, therefore dependent on the temperature and pressure of gases. The rate of diffusion N A is usually expressed as the number of moles diffusing across unit area in unit time. As with the basic equation of heat transfer, this indicates that the rate of ...