enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.

  3. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...

  5. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  6. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  7. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A partially ordered set in which every chain has a least upper bound. Closure operator. A closure operator on the poset P is a function C : P → P that is monotone, idempotent, and satisfies C(x) ≥ x for all x in P. Compact. An element x of a poset is compact if it is way below itself, i.e. x<<x. One also says that such an x is finite ...

  8. Figure of speech - Wikipedia

    en.wikipedia.org/wiki/Figure_of_speech

    A figure of speech or rhetorical figure is a word or phrase that intentionally deviates from straightforward language use or literal meaning to produce a rhetorical or intensified effect (emotionally, aesthetically, intellectually, etc.). [1] [2] In the distinction between literal and figurative language, figures of

  9. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    A given partially ordered set may have several different completions. For instance, one completion of any partially ordered set S is the set of its downwardly closed subsets ordered by inclusion. S is embedded in this (complete) lattice by mapping each element x to the lower set of elements that are less than or equal to x.