Search results
Results from the WOW.Com Content Network
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.
Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]
Esters can be converted to other esters in a process known as transesterification. Transesterification can be either acid- or base-catalyzed, and involves the reaction of an ester with an alcohol. Unfortunately, because the leaving group is also an alcohol, the forward and reverse reactions will often occur at similar rates.
The Pinner reaction refers to the acid catalysed reaction of a nitrile with an alcohol to form an imino ester salt (alkyl imidate salt); this is sometimes referred to as a Pinner salt. [1] The reaction is named after Adolf Pinner , who first described it in 1877.
The Yamaguchi esterification is the chemical reaction of an aliphatic carboxylic acid and 2,4,6-trichlorobenzoyl chloride (TCBC, Yamaguchi reagent) to form a mixed anhydride which, upon reaction with an alcohol in the presence of stoichiometric amount of DMAP, produces the desired ester. It was first reported by Masaru Yamaguchi et al. in 1979 ...
The reaction was first described by Emil Fischer and Arthur Speier in 1895. [1] Most carboxylic acids are suitable for the reaction, but the alcohol should generally be primary or secondary. Tertiary alcohols are prone to elimination. Contrary to common misconception found in organic chemistry textbooks, phenols can also be esterified to give ...
An example of an ester formation is the substitution reaction between a carboxylic acid (R−C(=O)−OH) and an alcohol (R'OH), forming an ester (R−C(=O)−O−R'), where R and R′ are organyl groups, or H in the case of esters of formic acid.
Ortho esters can be prepared by the Pinner reaction, in which nitriles react with alcohols in the presence of one equivalent of hydrogen chloride. The reaction proceeds by formation of imido ester hydrochloride: RCN + R ′ OH + HCl → [RC(OR ′)=NH 2] + Cl −. Upon standing in the presence of excess alcohol, this intermediate converts to ...