Search results
Results from the WOW.Com Content Network
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO 3) 3. (H 2 O) n. Most common is the nonahydrate Fe(NO 3) 3. (H 2 O) 9. The hydrates are all pale colored, water-soluble paramagnetic salts.
Iron(II) nitrate is the nitrate salt of iron(II). It is commonly encountered as the green hexahydrate, Fe(NO 3) 2 ·6H 2 O, which is a metal aquo complex, however it is not commercially available unlike iron(III) nitrate due to its instability to air. The salt is soluble in water and serves as a ready source of ferrous ions.
Calculated hematocrit is determined by multiplying the red cell count by the mean cell volume. The hematocrit is slightly more accurate, as the PCV includes small amounts of blood plasma trapped between the red cells. An estimated hematocrit as a percentage may be derived by tripling the hemoglobin concentration in g/dL and dropping the units. [11]
Iron(III) nitrate dissolved in water to give [Fe(H 2 O) 6] 3+ ions. In these complexes, the protons are acidic. In these complexes, the protons are acidic. Eventually these solutions hydrolyze producing iron(III) hydroxide Fe(OH) 3 that further converts to polymeric oxide-hydroxide via the process called olation .
Iron nitrate may refer to: Iron(II) nitrate , Fe(NO 3 ) 2 , a green compound that is unstable to heat Iron(III) nitrate (or ferric nitrate), Fe(NO 3 ) 3 , a pale violet compound that has a low melting point
When metallic iron (oxidation state 0) is placed in a solution of hydrochloric acid, iron(II) chloride is formed, with release of hydrogen gas, by the reaction Fe 0 + 2 H + → Fe 2+ + H 2. Iron(II) is oxidized by hydrogen peroxide to iron(III), forming a hydroxyl radical and a hydroxide ion in the process. This is the Fenton reaction.
In the NO − 3 anion, the oxidation state of the central nitrogen atom is V (+5). This corresponds to the highest possible oxidation number of nitrogen. Nitrate is a potentially powerful oxidizer as evidenced by its explosive behaviour at high temperature when it is detonated in ammonium nitrate (NH 4 NO 3), or black powder, ignited by the shock wave of a primary explosive.
It is calculated by dividing the hemoglobin by the hematocrit. Reference ranges for blood tests are 32 to 36 g/dL (320 to 360g/L), [1] or between 4.81 and 5.58 mmol/L. It is thus a mass or molar concentration. Still, many instances measure MCHC in percentage (%), as if it were a mass fraction (m Hb / m RBC).