Search results
Results from the WOW.Com Content Network
Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization. As s orbitals are spherical (and have no directionality) and p orbitals are oriented 90° to each other, a theory was needed to explain why molecules such as methane (CH 4 ) had ...
Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.
In organic chemistry, planar, three-connected carbon centers that are trigonal planar are often described as having sp 2 hybridization. [2] [3] Nitrogen inversion is the distortion of pyramidal amines through a transition state that is trigonal planar. Pyramidalization is a distortion of this molecular shape towards a tetrahedral molecular ...
Isolobal compounds are analogues to isoelectronic compounds that share the same number of valence electrons and structure. A graphic representation of isolobal structures, with the isolobal pairs connected through a double-headed arrow with half an orbital below, is found in Figure 1. Figure 1: Basic example of the isolobal analogy
Section 3: Physical Constants of Organic Compounds; Section 4: Properties of the Elements and Inorganic Compounds; Section 5: Thermochemistry, Electrochemistry, and Kinetics (or Thermo, Electro & Solution Chemistry) Section 6: Fluid Properties; Section 7: Biochemistry; Section 8: Analytical Chemistry; Section 9: Molecular Structure and Spectroscopy
Fluorescence in situ hybridization (FISH) is a laboratory method used to detect and locate a DNA sequence, often on a particular chromosome. [4]In the 1960s, researchers Joseph Gall and Mary Lou Pardue found that molecular hybridization could be used to identify the position of DNA sequences in situ (i.e., in their natural positions within a chromosome).