Search results
Results from the WOW.Com Content Network
Forming aldehydes from carboxylic acid derivatives is challenging because weaker reducing agents (NaBH 4) are often very slow at reducing esters and carboxylic acids, whereas stronger reducing agents (LiAlH 4) immediately reduce the formed aldehyde to an alcohol. [10] Conversion to thioester followed by Fukuyama reduction
The complex can reduce carboxylic acids to alcohols and is a common route for the reduction of amino acids to amino alcohols [3] (e.g. valinol). It adds across alkenes to give organoboron compounds that are useful intermediates. [4]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group (−C(=O)−OH) [1] attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO 2 H, sometimes as R−C(O)OH with R referring to an organyl group (e.g., alkyl, alkenyl, aryl), or hydrogen, or other groups ...
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]
Most carboxylic acids are suitable for the reaction, but the alcohol should generally be primary or secondary. Tertiary alcohols are prone to elimination . Contrary to common misconception found in organic chemistry textbooks, phenols can also be esterified to give good to near quantitative yield of products.