enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  3. Additive function - Wikipedia

    en.wikipedia.org/wiki/Additive_function

    In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: [1] = + ().

  4. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    The commutativity and associativity of real addition are immediate; defining the real number 0 to be the set of negative rationals, it is easily seen to be the additive identity. Probably the trickiest part of this construction pertaining to addition is the definition of additive inverses. [67] Adding π 2 /6 and e using Cauchy sequences of ...

  5. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  6. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  7. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    In mathematics, the persistence of a number is the number of times one must apply a given operation to an integer before reaching a fixed point at which the operation no longer alters the number. Usually, this involves additive or multiplicative persistence of a non-negative integer, which is how often one has to replace the number by the sum ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...