enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Euclid-Elements.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Euclid-Elements.pdf

    Euclid's Elements (Ancient Greek) Compiled for anyone who would want to read the Euclid's work in Greek, especially in order to provide them a printer-friendly copy of the work. No hyperlink for Definitions, Postulates, Common Notions, Propositions, Corollaries, or Lemmas. Only the text and diagrams.

  3. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  4. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  6. Euclid's Optics - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Optics

    Similar to Euclid's much more famous work on geometry, Elements, Optics begins with a small number of definitions and postulates, which are then used to prove, by deductive reasoning, a body of geometric propositions about vision. The postulates in Optics are: Let it be assumed That rectilinear rays proceeding from the eye diverge indefinitely;

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid did not postulate the converse of his fifth postulate, which is one way to distinguish Euclidean geometry from elliptic geometry. The Elements contains the proof of an equivalent statement (Book I, Proposition 27): If a straight line falling on two straight lines make the alternate angles equal to one another, the straight lines will be ...

  8. File:Euclidis Phaenomena.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Euclidis_Phaenomena.pdf

    Original file (1,233 × 1,754 pixels, file size: 10.47 MB, MIME type: application/pdf, 128 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  9. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    The proof of Proposition 1.16 given by Euclid is often cited as one place where Euclid gives a flawed proof. [5] [6] [7] Euclid proves the exterior angle theorem by: construct the midpoint E of segment AC, draw the ray BE, construct the point F on ray BE so that E is (also) the midpoint of B and F, draw the segment FC.