Search results
Results from the WOW.Com Content Network
Euclid's Elements (Ancient Greek) Compiled for anyone who would want to read the Euclid's work in Greek, especially in order to provide them a printer-friendly copy of the work. No hyperlink for Definitions, Postulates, Common Notions, Propositions, Corollaries, or Lemmas.
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
Similar to Euclid's much more famous work on geometry, Elements, Optics begins with a small number of definitions and postulates, which are then used to prove, by deductive reasoning, a body of geometric propositions about vision. The postulates in Optics are: Let it be assumed That rectilinear rays proceeding from the eye diverge indefinitely;
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
The independence of the parallel postulate from Euclid's other axioms was finally demonstrated by Eugenio Beltrami in 1868. [65] The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate.
This, for instance, applies to all theorems in Euclid's Elements, Book I. An example of a theorem of Euclidean geometry which cannot be so formulated is the Archimedean property: to any two positive-length line segments S 1 and S 2 there exists a natural number n such that nS 1 is longer than S 2.
Euclid did not postulate the converse of his fifth postulate, which is one way to distinguish Euclidean geometry from elliptic geometry. The Elements contains the proof of an equivalent statement (Book I, Proposition 27): If a straight line falling on two straight lines make the alternate angles equal to one another, the straight lines will be ...