enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Since rational functions with no poles are simply polynomials, we get the following corollary: If K is a compact subset of C such that C\K is a connected set, and f is a holomorphic function on an open set containing K, then there exists a sequence of polynomials () that approaches f uniformly on K (the assumptions can be relaxed, see Mergelyan ...

  3. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  4. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...

  5. Risch algorithm - Wikipedia

    en.wikipedia.org/wiki/Risch_Algorithm

    It is based on the form of the function being integrated and on methods for integrating rational functions, radicals, logarithms, and exponential functions. Risch called it a decision procedure , because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that ...

  6. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  7. Nevanlinna theory - Wikipedia

    en.wikipedia.org/wiki/Nevanlinna_theory

    For example, the Inverse Problem of Nevanlinna theory consists in constructing meromorphic functions with pre-assigned deficiencies at given points. This was solved by David Drasin in 1976. [ 9 ] Another direction was concentrated on the study of various subclasses of the class of all meromorphic functions in the plane.

  8. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  9. Function field (scheme theory) - Wikipedia

    en.wikipedia.org/wiki/Function_field_(scheme_theory)

    The sheaf of rational functions K X of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties , such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, K X ( U ) is the ...