Search results
Results from the WOW.Com Content Network
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
Thermodynamics defines the statistical behaviour of large numbers of entities, whose exact behavior is given by more specific laws. While the fundamental theoretical laws of physics are all time-reversible, [8] experimentally the probability of real reversibility is low and the former state of system and surroundings is recovered only to certain extent (see: uncertainty principle).
In a reversible or quasi-static, idealized process of transfer of energy as heat to a closed thermodynamic system of interest, (which allows the entry or exit of energy – but not transfer of matter), from an auxiliary thermodynamic system, an infinitesimal increment in the entropy of the system of interest is defined to result from an ...
The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire.
Clausius developed this in his efforts to explain entropy and define it quantitatively. In more direct terms, the theorem gives us a way to determine if a cyclical process is reversible or irreversible. The Clausius theorem provides a quantitative formula for understanding the second law.
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics. Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq).
In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the system as heat. For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings.
Equations of mechanics are reversible in time, hence, the reverse collisions obey the same laws. This reversibility of collisions is the first example of microreversibility. According to Boltzmann, this microreversibility implies the principle of detailed balance for collisions: at the equilibrium ensemble each collision is equilibrated by its ...