enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Base (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Base_(chemistry)

    A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...

  3. Lewis acids and bases - Wikipedia

    en.wikipedia.org/wiki/Lewis_acids_and_bases

    For example, bases donating a lone pair from an oxygen atom are harder than bases donating through a nitrogen atom. Although the classification was never quantified it proved to be very useful in predicting the strength of adduct formation, using the key concepts that hard acid—hard base and soft acid—soft base interactions are stronger ...

  4. Category:Bases (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Category:Bases_(chemistry)

    Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.

  5. Conjugate (acid-base theory) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(acid-base_theory)

    On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 1010, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.

  6. Organic base - Wikipedia

    en.wikipedia.org/wiki/Organic_base

    An organic base is an organic compound which acts as a base. Organic bases are usually, but not always, proton acceptors. They usually contain nitrogen atoms, which can easily be protonated. For example, amines or nitrogen-containing heterocyclic compounds have a lone pair of electrons on the nitrogen atom and can thus act as proton acceptors. [1]

  7. List of reagents - Wikipedia

    en.wikipedia.org/wiki/List_of_reagents

    a strong base; deprotonates ketones and esters to generate enolate derivative Sodium borohydride: a versatile reducing agent; converts ketones and aldehydes to alcohols Sodium chlorite: in organic synthesis, used for the oxidation of aldehydes to carboxylic acids Sodium hydride: a strong base used in organic synthesis Sodium hydroxide

  8. Non-nucleophilic base - Wikipedia

    en.wikipedia.org/wiki/Non-nucleophilic_base

    1,5-Diazabicyclo(4.3.0)non-5-ene (DBN) - comparable to DBU; 2,6-Di-tert-butylpyridine, a weak non-nucleophilic base [2] pK a = 3.58; Phosphazene bases, such as t-Bu-P 4 [3] Non-nucleophilic bases of high strength are usually anions. For these species, the pK a s of the conjugate acids are around 35–40. Lithium diisopropylamide (LDA), pK a ...

  9. Alkali salt - Wikipedia

    en.wikipedia.org/wiki/Alkali_salt

    Alkali salts or base salts are salts that are the product of incomplete neutralization of a strong base and a weak acid. Rather than being neutral (as some other salts), alkali salts are bases as their name suggests. What makes these compounds basic is that the conjugate base from the weak acid hydrolyzes to form a basic solution.