Search results
Results from the WOW.Com Content Network
The Haar measure for SO(3) in Euler angles is given by the Hopf angle parametrisation of SO(3), , [5] where (,) parametrise , the space of rotation axes. For example, to generate uniformly randomized orientations, let α and γ be uniform from 0 to 2 π , let z be uniform from −1 to 1, and let β = arccos( z ) .
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L 1 and L 2. I.e., angle ∠ POP′′ will measure 2θ. A pair of rotations about the same point O will be equivalent to another rotation about point O.
If the goal is to keep the shuttle during its orbits in a constant attitude with respect to the sky, e.g. in order to perform certain astronomical observations, the preferred reference is the inertial frame, and the RPY angle vector (0|0|0) describes an attitude then, where the shuttle's wings are kept permanently parallel to the Earth's ...
A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensional spaces are often called planes, or, more generally, surfaces. These include analogs to physical ...
Examples of two 2D direction vectors. A direction is used to represent linear objects such as axes of rotation and normal vectors. A direction may be used as part of the representation of a more complicated object's orientation in physical space (e.g., axis–angle representation). Two airplanes in parallel (and opposite) directions.