enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    In mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity a 2 − b 2 = ( a + b ) ( a − b ) {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}

  3. Geometric magic square - Wikipedia

    en.wikipedia.org/wiki/Geometric_magic_square

    The richer structure of geomagic squares is reflected in the existence of specimens showing a far greater degree of 'magic' than is possible with numerical types. Thus a panmagic square is one in which every diagonal, including the so-called broken diagonals, shares the same magic property as the rows and columns. However, it is easily shown ...

  4. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    A pan-diagonal magic square remains a pan-diagonal magic square under cyclic shifting of rows or of columns or both. [69] This allows us to position a given number in any one of the n 2 cells of an n order square. Thus, for a given pan-magic square, there are n 2 equivalent pan-magic squares. In the example below, the original square on the ...

  5. Broken diagonal - Wikipedia

    en.wikipedia.org/wiki/Broken_diagonal

    A magic square in which the broken diagonals have the same sum as the rows, columns, and diagonals is called a pandiagonal magic square. [1] [2] Examples of broken diagonals from the number square in the image are as follows: 3,12,14,5; 10,1,7,16; 10,13,7,4; 15,8,2,9; 15,12,2,5; and 6,13,11,4. The fact that this square is a pandiagonal magic ...

  6. Pandiagonal magic square - Wikipedia

    en.wikipedia.org/wiki/Pandiagonal_magic_square

    A pandiagonal magic square or panmagic square (also diabolic square, diabolical square or diabolical magic square) is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the square, also add up to the magic constant.

  7. Magic cube classes - Wikipedia

    en.wikipedia.org/wiki/Magic_cube_classes

    For the diagonal or pandiagonal classes, one or possibly 2 of the 6 oblique magic squares may be pandiagonal magic. All but 6 of the oblique squares are 'broken'. This is analogous to the broken diagonals in a pandiagonal magic square. i.e. Broken diagonals are 1-D in a 2-D square; broken oblique squares are 2-D in a 3-D cube.

  8. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well. In the remainder of this article we will consider only square diagonal matrices, and refer to them ...

  9. Most-perfect magic square - Wikipedia

    en.wikipedia.org/wiki/Most-perfect_magic_square

    Apart from the trivial case of the first order square, most-perfect magic squares are all of order 4n. In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic ...